Section 3.6

2. The characteristic equation for the homogeneous problem is $r^2 + 2r + 5 = 0$, with complex roots $r = -1\pm 2i$. Hence $y_c(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$. Since the function $g(t) = 3 \sin 2t$ is not proportional to the solutions of the homogeneous equation, set $Y = A \cos 2t + B \sin 2t$. Substitution into the given ODE, and comparing the coefficients, results in the system of equations B - 4A = 3 and A + 4B = 0. Hence $Y = -\frac{12}{17}\cos 2t + \frac{3}{17}\sin 2t$. The general solution is $y(t) = y_c(t) + Y$.

3. The characteristic equation for the homogeneous problem is $r^2 - 2r - 3 = 0$, with roots r = -1, 3. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{3t}$. Note that the assignment $Y = Ate^{-t}$ is *not* sufficient to match the coefficients. Try $Y = Ate^{-t} + Bt^2e^{-t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations -4A + 2B = 0 and -8B = -3. Hence $Y = \frac{3}{16}te^{-t} + \frac{3}{8}t^2e^{-t}$. The general

solution is $y(t) = y_c(t) + Y$.

5. The characteristic equation for the homogeneous problem is $r^2 + 9 = 0$, with complex roots $r = \pm 3i$. Hence $y_c(t) = c_1 \cos 3t + c_2 \sin 3t$. To simplify the analysis, set $g_1(t) = 6$ and $g_2(t) = t^2 e^{3t}$. By inspection, we have $Y_1 = 2/3$. Based on the form of g_2 , set $Y_2 = Ae^{3t} + Bte^{3t} + Ct^2e^{3t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations 18A + 6B + 2C = 0, 18B + 12C = 0, and 18C = 1. Hence

$$Y_2 = \frac{1}{162}e^{3t} - \frac{1}{27}te^{3t} + \frac{1}{18}t^2e^{3t}.$$

The general solution is $y(t) = y_c(t) + Y_1 + Y_2$.

7. The characteristic equation for the homogeneous problem is $2r^2 + 3r + 1 = 0$, with roots r = -1, -1/2. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{-t/2}$. To simplify the analysis, set $g_1(t) = t^2$ and $g_2(t) = 3 \sin t$. Based on the form of g_1 , set $Y_1 = A + Bt + Ct^2$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations A + 3B + 4C = 0, B + 6C = 0, and C = 1. Hence we obtain $Y_1 = 14 - 6t + t^2$. On the other hand, set $Y_2 = D \cos t + E \sin t$. After substitution into the ODE, we find that D = -9/10 and E = -3/10. The general solution is $y(t) = y_c(t) + Y_1 + Y_2$.

9. The characteristic equation for the homogeneous problem is $r^2 + \omega_0^2 = 0$, with complex roots $r = \pm \omega_0 i$. Hence $y_c(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t$. Since $\omega \neq \omega_0$, set $Y = A \cos \omega t + B \sin \omega t$. Substitution into the ODE and comparing the coefficients results in the system of equations $(\omega_0^2 - \omega^2)A = 1$ and $(\omega_0^2 - \omega^2)B = 0$. Hence

$$Y = \frac{1}{\omega_0^2 - \omega^2} \cos \omega t \,.$$

The general solution is $y(t) = y_c(t) + Y$.

10. From Prob. 9, $y_c(t) = c$. Since $\cos \omega_0 t$ is a solution of the homogeneous problem, set $Y = At \cos \omega_0 t + Bt \sin \omega_0 t$. Substitution into the given ODE and comparing the coefficients results in A = 0 and $B = \frac{1}{2\omega_0}$. Hence the general solution is $y(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{t}{2\omega_0} \sin \omega_0 t$.

12. The characteristic equation for the homogeneous problem is $r^2 - r - 2 = 0$, with roots r = -1, 2. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$. Based on the form of the right hand side, that is, $cosh(2t) = (e^{2t} + e^{-2t})/2$, set $Y = At e^{2t} + Be^{-2t}$. Substitution into the given ODE and comparing the coefficients results in A = 1/6 and B = 1/8. Hence the general solution is $y(t) = c_1 e^{-t} + c_2 e^{2t} + t e^{2t}/6 + e^{-2t}/8$.

14. The characteristic equation for the homogeneous problem is $r^2 + 4 = 0$, with roots $r = \pm 2i$. Hence $y_c(t) = c_1 \cos 2t + c_2 \sin 2t$. Set $Y_1 = A + Bt + Ct^2$. Comparing the coefficients of the respective terms, we find that A = -1/8, B = 0, C = 1/4. Now set $Y_2 = De^t$, and obtain D = 3/5. Hence the general solution is

$$y(t) = c_1 \cos 2t + c_2 \sin 2t - \frac{1}{8} + \frac{t^2}{4} + \frac{3}{8} \frac{e^t}{5}$$
.

Invoking the initial conditions, we require that $19/40 + c_1 = 0$ and $3/5 + 2c_2 = 2$. Hence $c_1 = -19/40$ and $c_2 = 7/10$.

15. The characteristic equation for the homogeneous problem is $r^2 - 2r + 1 = 0$, with a double root r = 1. Hence $y_c(t) = c_1e^t + c_2t e^t$. Consider $g_1(t) = t e^t$. Note that g_1 is a solution of the homogeneous problem. Set $Y_1 = At^2e^t + Bt^3e^t$ (the *first* term is not sufficient for a match). Upon substitution, we obtain $Y_1 = t^3e^t/6$. By inspection, $Y_2 = 4$. Hence the general solution is $y(t) = c_1e^t + c_2t e^t + t^3e^t/6 + 4$. Invoking the initial conditions, we require that $c_1 + 4 = 1$ and $c_1 + c_2 = 1$. Hence $c_1 = -3$ and $c_2 = 4$.

17. The characteristic equation for the homogeneous problem is $r^2 + 4 = 0$, with roots $r = \pm 2i$. Hence $y_c(t) = c_1 \cos 2t + c_2 \sin 2t$. Since the function $\sin 2t$ is a solution of the homogeneous problem, set $Y = At \cos 2t + Bt \sin 2t$. Upon substitution, we obtain $Y = -\frac{3}{4}t \cos 2t$. Hence the general solution is $y(t) = c_1 \cos 2t + c_2 \sin 2t - \frac{1}{4}t \cos 2t$. Invoking the initial conditions, we require that $c_1 = 2$ and $2c_2 - \frac{3}{4} = -1$. Hence $c_1 = 2$ and $c_2 = -\frac{1}{8}$.

18. The characteristic equation for the homogeneous problem is $r^2 + 2r + 5 = 0$, with complex roots $r = -1 \pm 2i$. Hence $y_c(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$. Based on the form of g(t), set $Y = At e^{-t} \cos 2t + Bt e^{-t} \sin 2t$. After comparing coefficients, we obtain $Y = t e^{-t} \sin 2t$. Hence the general solution is

$$y(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t + t e^{-t} \sin 2t$$
.

Invoking the initial conditions, we require that $c_1 = 1$ and $-c_1 + 2c_2 = 0$. Hence $c_1 = 1$ and $c_2 = 1/2$.

20. The characteristic equation for the homogeneous problem is $r^2 + 1 = 0$, with complex roots $r = \pm i$. Hence $y_c(t) = c_1 cos t + c_2 sin t$. Let $g_1(t) = t sin t$ and $g_2(t) = t$. By inspection, it is easy to see that $Y_2(t) = 1$. Based on the form of $g_1(t)$, set $Y_1(t) = At cos t + Bt sin t + Ct^2 cos t + Dt^2 sin t$. Substitution into the equation and comparing the coefficients results in A = 0, B = 1/4, C = -1/4, and D = 0. Hence $Y(t) = 1 + \frac{1}{4}t sin t - \frac{1}{4}t^2 cos t$.

21. The characteristic equation for the homogeneous problem is $r^2 - 5r + 6 = 0$, with roots r = 2, 3. Hence $y_c(t) = c_1 e^{2t} + c_2 e^{3t}$. Consider $g_1(t) = e^{2t}(3t + 4)sint$, and $g_2(t) = e^t cos 2t$. Based on the form of these functions on the right hand side of the ODE,

set $Y_2(t) = e^t(A_1 \cos 2t + A_2 \sin 2t)$, $Y_1(t) = (B_1 + B_2 t)e^{2t} \sin t + (C_1 + C_2 t)e^{2t} \cos t$. Substitution into the equation and comparing the coefficients results in

$$Y(t) = -\frac{1}{20} \left(e^t \cos 2t + 3e^t \sin 2t \right) + \frac{3}{2} t e^{2t} (\cos t - \sin t) + e^{2t} \left(\frac{1}{2} \cos t - 5\sin t \right)$$

23. The characteristic roots are r = 2, 2. Hence $y_c(t) = c_1 e^{2t} + c_2 t e^{2t}$. Consider the functions $g_1(t) = 2t^2$, $g_2(t) = 4te^{2t}$, and $g_3(t) = t \sin 2t$. The corresponding forms of the respective parts of the particular solution are $Y_1(t) = A_0 + A_1t + A_2t^2$, $Y_2(t) = e^{2t}(B_2t^2 + B_3t^3)$, and $Y_3(t) = t(C_1\cos 2t + C_2\sin 2t) + (D_1\cos 2t + D_2\sin 2t)$. Substitution into the equation and comparing the coefficients results in

$$Y(t) = \frac{1}{4} \left(3 + 4t + 2t^2 \right) + \frac{2}{3} t^3 e^{2t} + \frac{1}{8} t \cos 2t + \frac{1}{16} \left(\cos 2t - \sin 2t \right).$$

24. The homogeneous solution is $y_c(t) = c_1 \cos 2t + c_2 \sin 2t$. Since $\cos 2t$ and $\sin 2t$ are both solutions of the homogeneous equation, set

$$Y(t) = t (A_0 + A_1 t + A_2 t^2) \cos 2t + t (B_0 + B_1 t + B_2 t^2) \sin 2t.$$

Substitution into the equation and comparing the coefficients results in

$$Y(t) = \left(\frac{13}{32}t - \frac{1}{12}t^3\right)\cos 2t + \frac{1}{16}\left(28t + 13t^2\right)\sin 2t.$$

25. The homogeneous solution is $y_c(t) = c_1e^{-t} + c_2te^{-2t}$. None of the functions on the right hand side are solutions of the homogeneous equation. In order to include all possible combinations of the derivatives, consider $Y(t) = e^t(A_0 + A_1t + A_2t^2)\cos 2t + e^t(B_0 + B_1t + B_2t^2)\sin 2t + e^{-t}(C_1\cos t + C_2\sin t) + De^t$. Substitution into the differential equation and comparing the coefficients results in

$$Y(t) = e^{t} (A_{0} + A_{1}t + A_{2}t^{2}) \cos 2t + e^{t} (B_{0} + B_{1}t + B_{2}t^{2}) \sin 2t + e^{-t} (-\frac{2}{3}\cos t + \frac{2}{3}\sin t) + 2e^{t}/3,$$