Using Properties and Known Values to Find Other Integrals

9. Suppose that f and g are integrable and that

$$\int_{1}^{2} f(x) \, dx = -4, \int_{1}^{5} f(x) \, dx = 6, \int_{1}^{5} g(x) \, dx = 8.$$

Use the rules in Table 5.3 to find

a.
$$\int_{2}^{2} g(x) dx$$

b. $\int_{5}^{1} g(x) dx$
c. $\int_{1}^{2} 3f(x) dx$
d. $\int_{2}^{5} f(x) dx$
e. $\int_{1}^{5} [f(x) - g(x)] dx$
f. $\int_{1}^{5} [4f(x) - g(x)] dx$

<u>a</u> 1

10. Suppose that f and h are integrable and that

$$\int_{1}^{9} f(x) \, dx = -1, \quad \int_{7}^{9} f(x) \, dx = 5, \quad \int_{7}^{9} h(x) \, dx = 4.$$

Use the rules in Table 5.3 to find

a.
$$\int_{1}^{9} -2f(x) dx$$

b. $\int_{7}^{9} [f(x) + h(x)] dx$
c. $\int_{7}^{9} [2f(x) - 3h(x)] dx$
d. $\int_{9}^{1} f(x) dx$
e. $\int_{1}^{7} f(x) dx$
f. $\int_{9}^{7} [h(x) - f(x)] dx$

11. Suppose that $\int_{1}^{2} f(x) dx = 5$. Find

a.
$$\int_{1}^{2} f(u) du$$

b. $\int_{1}^{2} \sqrt{3} f(z) dz$
c. $\int_{2}^{1} f(t) dt$
d. $\int_{1}^{2} [-f(x)] dx$

12. Suppose that $\int_{-3}^{0} g(t) dt = \sqrt{2}$. Find

a.
$$\int_{0}^{-5} g(t) dt$$

b. $\int_{-3}^{0} g(u) du$
c. $\int_{-3}^{0} [-g(x)] dx$
d. $\int_{-3}^{-3} \frac{g(r)}{\sqrt{2}} dr$

13. Suppose that f is integrable and that $\int_0^3 f(z) dz = 3$ and $\int_0^4 f(z) dz = 7$. Find

a.
$$\int_{3}^{4} f(z) dz$$
 b. $\int_{4}^{3} f(t) dt$

14. Suppose that h is integrable and that $\int_{-1}^{1} h(r) dr = 0$ and $\int_{-1}^{3} h(r) dr = 6$. Find $\int_{-1}^{3} h(r) dr = 6$.

a.
$$\int_{1}^{5} h(r) dr$$
 b. $-\int_{3}^{5} h(u) du$

Using Area to Evaluate Definite Integrals

In Exercises 15–22, graph the integrands and use areas to evaluate the integrals.

15.
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$$
 16. $\int_{1/2}^{3/2} (-2x + 4) dx$

17.
$$\int_{-3}^{3} \sqrt{9 - x^{2}} dx$$
18.
$$\int_{-4}^{0} \sqrt{16 - x^{2}} dx$$
19.
$$\int_{-2}^{1} |x| dx$$
20.
$$\int_{-1}^{1} (1 - |x|) dx$$
21.
$$\int_{-1}^{1} (2 - |x|) dx$$
22.
$$\int_{-1}^{1} (1 + \sqrt{1 - x^{2}}) dx$$

Use areas to evaluate the integrals in Exercises 23-26.

23.
$$\int_{0}^{b} \frac{x}{2} dx$$
, $b > 0$
24. $\int_{0}^{b} 4x dx$, $b > 0$
25. $\int_{a}^{b} 2s ds$, $0 < a < b$
26. $\int_{a}^{b} 3t dt$, $0 < a < b$

Evaluations

Use the results of Equations (1) and (3) to evaluate the integrals in Exercises 27-38.

27.
$$\int_{1}^{\sqrt{2}} x \, dx$$
28.
$$\int_{0.5}^{2.5} x \, dx$$
29.
$$\int_{\pi}^{2\pi} \theta \, d\theta$$
30.
$$\int_{\sqrt{2}}^{5\sqrt{2}} r \, dr$$
31.
$$\int_{0}^{\sqrt{7}} x^{2} \, dx$$
32.
$$\int_{0}^{0.3} s^{2} \, ds$$
33.
$$\int_{0}^{1/2} t^{2} \, dt$$
34.
$$\int_{0}^{\pi/2} \theta^{2} \, d\theta$$
35.
$$\int_{a}^{2a} x \, dx$$
36.
$$\int_{a}^{\sqrt{3}a} x \, dx$$
37.
$$\int_{0}^{\sqrt{3}b} x^{2} \, dx$$
38.
$$\int_{0}^{3b} x^{2} \, dx$$

Use the rules in Table 5.3 and Equations (1)–(3) to evaluate the integrals in Exercises 39–50.

39.
$$\int_{3}^{1} 7 \, dx$$
40.
$$\int_{0}^{-2} \sqrt{2} \, dx$$
41.
$$\int_{0}^{2} 5x \, dx$$
42.
$$\int_{3}^{5} \frac{x}{8} \, dx$$
43.
$$\int_{0}^{2} (2t - 3) \, dt$$
44.
$$\int_{0}^{\sqrt{2}} (t - \sqrt{2}) \, dt$$
45.
$$\int_{2}^{1} \left(1 + \frac{z}{2}\right) \, dz$$
46.
$$\int_{3}^{0} (2z - 3) \, dz$$
47.
$$\int_{1}^{2} 3u^{2} \, du$$
48.
$$\int_{1/2}^{1} 24u^{2} \, du$$
49.
$$\int_{0}^{2} (3x^{2} + x - 5) \, dx$$
50.
$$\int_{1}^{0} (3x^{2} + x - 5) \, dx$$

Finding Area

In Exercises 51–54 use a definite integral to find the area of the region between the given curve and the *x*-axis on the interval [0, b].

51.
$$y = 3x^2$$

52. $y = \pi x^2$
53. $y = 2x$
54. $y = \frac{x}{2} + 1$

Average Value

In Exercises 55–62, graph the function and find its average value over the given interval.

55.
$$f(x) = x^2 - 1$$
 on $[0, \sqrt{3}]$
56. $f(x) = -\frac{x^2}{2}$ on $[0, 3]$ **57.** $f(x) = -3x^2 - 1$ on $[0, 1]$
58. $f(x) = 3x^2 - 3$ on $[0, 1]$
59. $f(t) = (t - 1)^2$ on $[0, 3]$
60. $f(t) = t^2 - t$ on $[-2, 1]$
61. $g(x) = |x| - 1$ on **a.** $[-1, 1]$, **b.** $[1, 3]$, and **c.** $[-1, 3]$
62. $h(x) = -|x|$ on **a.** $[-1, 0]$, **b.** $[0, 1]$, and **c.** $[-1, 1]$

Theory and Examples

63. What values of a and b maximize the value of

$$\int_a^b (x - x^2) \, dx?$$

(Hint: Where is the integrand positive?)

64. What values of a and b minimize the value of

$$\int_a^b (x^4 - 2x^2) \, dx?$$

65. Use the Max-Min Inequality to find upper and lower bounds for the value of

$$\int_0^1 \frac{1}{1+x^2} dx$$

66. (*Continuation of Exercise 65*) Use the Max-Min Inequality to find upper and lower bounds for

$$\int_0^{0.5} \frac{1}{1+x^2} \, dx \quad \text{and} \quad \int_{0.5}^1 \frac{1}{1+x^2} \, dx.$$

Add these to arrive at an improved estimate of

$$\int_0^1 \frac{1}{1+x^2} dx.$$

- **67.** Show that the value of $\int_0^1 \sin(x^2) dx$ cannot possibly be 2.
- **68.** Show that the value of $\int_1^0 \sqrt{x+8} \, dx$ lies between $2\sqrt{2} \approx 2.8$ and 3.
- **69.** Integrals of nonnegative functions Use the Max-Min Inequality to show that if f is integrable then

$$f(x) \ge 0$$
 on $[a, b] \implies \int_a^b f(x) \, dx \ge 0$

70. Integrals of nonpositive functions Show that if f is integrable then

$$f(x) \le 0$$
 on $[a, b] \Rightarrow \int_a^b f(x) dx \le 0$

71. Use the inequality $\sin x \le x$, which holds for $x \ge 0$, to find an upper bound for the value of $\int_0^1 \sin x \, dx$.

- 72. The inequality sec $x \ge 1 + (x^2/2)$ holds on $(-\pi/2, \pi/2)$. Use it to find a lower bound for the value of $\int_0^1 \sec x \, dx$.
- 73. If av(f) really is a typical value of the integrable function f(x) on [a, b], then the number av(f) should have the same integral over [a, b] that f does. Does it? That is, does

$$\int_{a}^{b} \operatorname{av}(f) \, dx = \int_{a}^{b} f(x) \, dx?$$

Give reasons for your answer.

- **74.** It would be nice if average values of integrable functions obeyed the following rules on an interval [*a*, *b*].
 - **a.** av(f + g) = av(f) + av(g)
 - **b.** $\operatorname{av}(kf) = k \operatorname{av}(f)$ (any number k)
 - **c.** $\operatorname{av}(f) \le \operatorname{av}(g)$ if $f(x) \le g(x)$ on [a, b].

Do these rules ever hold? Give reasons for your answers.

- **75.** Use limits of Riemann sums as in Example 4a to establish Equation (2).
- **76.** Use limits of Riemann sums as in Example 4a to establish Equation (3).

77. Upper and lower sums for increasing functions

- **a.** Suppose the graph of a continuous function f(x) rises steadily as *x* moves from left to right across an interval [a, b]. Let *P* be a partition of [a, b] into *n* subintervals of length $\Delta x = (b - a)/n$. Show by referring to the accompanying figure that the difference between the upper and lower sums for *f* on this partition can be represented graphically as the area of a rectangle *R* whose dimensions are [f(b) - f(a)] by Δx . (*Hint*: The difference U - L is the sum of areas of rectangles whose diagonals $Q_0Q_1, Q_1Q_2, \ldots, Q_{n-1}Q_n$ lie along the curve. There is no overlapping when these rectangles are shifted horizontally onto *R*.)
- **b.** Suppose that instead of being equal, the lengths Δx_k of the subintervals of the partition of [a, b] vary in size. Show that

$$U - L \le |f(b) - f(a)| \Delta x_{\max}$$

where Δx_{\max} is the norm of *P*, and hence that $\lim_{\|P\|\to 0} (U-L) = 0$.

